

MEDICINAL IMPORTANCE OF USNEOID LICHENS IN WESTERN GHATS, SOUTHERN INDIA

Rajeswari N.¹, Archana R. Mesta^{2*}, Vinayaka S. Kanivebagilu² and H.N. Ramesh Babu¹

¹Dept. of Botany and Seed Technology, Kuvempu University, Sahyadari Science College, Shimoga-577402, Karnataka

^{2*}Dept. of Botany, Kumadvathi First Grade College, Shimoga Road, Shikaripura-577427, Shimoga, Karnataka.

Abstract

Usnea Adans. is a large genus in the family Parmeliaceae with about 451 species that are widely distributed in polar, temperate and tropical regions of the world. The genus is recognized based on the fruticose thallus, branches with cartilaginous central axis and the presence of Usnic acid in the cortex. India is represented by the 60 species of *Usnea* among them 38 are recorded from the Western Ghats. *Usnea* has been used to treat various illnesses in addition to its historical use as dyes, cosmetics, preservatives and deodorants. Among the 38 species of *Usnea* in Western Ghats, 15 species are known to have medicinal values, in various traditional medicines in different part of the world. The secondary metabolites like Usnic acid, salazinic acid, stictic acid, diffractic acids produced by lichens are unique with respect to those of higher plants. Whole thallus is used is the preparation of medicines. *Usnea longissima* is used as an ingredient in the medicinal for bone settings, *U. ghattensis* is known for its antioxidant and anti microbial activity. The study aims at the medicinal value of less known group of plants and role of their bioactive compounds.

Key words : Usnea, medicinal lichens, Parmeliaceae

Introduction

Lichens are unique group of organisms showing symbiotic association between algae and fungi. These lichens have been used as a house hold item since ancient days. The medicinal uses of lichens have been recorded from different cultures in Europe, India, China, Tanzania, USA, South Africa, Nepal, Philippines, West Malaysia, Spain, Brazil, Argentina, Korea, Tibet, Russia, Japan, Mangolia, Canada, Libia, Ireland (Prateeksha et. al., 2016). Shipal in Atharveda is the first record of the use of lichen as medicine. In Avurveda, the Indian medicinal system, it has been widely used in the name of Charila. The Indian subcontinent harbours a rich lichen flora with 2,450 species (Awasthi, 2000). Lichens collected from the different part of India have been used indigenously and exported for many purposes such as food, fodder, medicines, cosmetics, perfumes and dyes.

Western Ghats harbours 949 lichen taxa, belonging to 929 species, 20 varieties, 150 genera and 54 families which is around 45% of the total lichens in India, highest

*Author for correspondence : E-mail : archu.mesta@gmail.com

for any lichenogeographic region in the country (Nayaka and Upreti, 2006). The genus Usnea is represented by 38 species in Western Ghats (Mesta *et al.*, 2015).

There are about 800 secondary metabolite identified from lichens and these are unique with respect to those produced by higher plants (Huneck and Yoshimura 1996). These secondary metabolites are useful chemical characteristics in lichen taxonomy (Hegnauer 1962). The slow growth and harsh environmental conditions are responsible for the production of secondary metabolite in lichens. The secondary metabolites have been produced to protect from herbivores (Lawrey, 1989). The secondary metabolite are responsible for the use of lichens in different fields such as medicinal, decorative, food, brewing, spices, dyeing, cosmetic and perfumery properties.

Among the lichens those belonging to the genus Usnea are used in medicines from ancient ages. Many species of Usnea are used as medicine from ancient ages. Usnea are used as an ingredient of medicines by ethnomedicinal practitioner in India and also in the world (Upreti and Chatterjee, 2007). The most commonly used lichen genus as medicine is *Usnea*, which is used all over the world except Australia (Branislav Rankoviæ 2015). Western Ghats harbours 38 species of *Usnea*, which is more than 50% of *Usnea* found in India. The main aim of the present work is to document the medicinal uses of these precious wealth of the Western Ghats.

Materials and Methods

The study area, Western Ghats comprises the

mountain ranges that runs along the west coast of India, Tapti valley in the north to Kanyakumari in the south. The Western Ghats comprises variety of vegetations such as scrub jungles, grasslands, dry and moist deciduous forests, semi-evergreen and evergreen forests. The complex topography and heavy rainfall have made certain areas inaccessible and have helped the region retain its diversity.

Survey was done regularly in different habitats of

Table 1	l:	List of	Usnea	species	used in	treatment	of different	diseases	with	their	secondary	metabolites.
---------	----	---------	-------	---------	---------	-----------	--------------	----------	------	-------	-----------	--------------

Sl. No.	Lichen Species	Uses	Secondary Metabolites	References
1.	U. aciculifera	Used for bladder infection, painfulurination,	Usnic acid, constictic and	16
		urinary retention, swelling, and edema in heart	stictic acids	
		andkidneys		
2.	U. austro indica	Used as medicine and spice	Usnic acid with or without	3
			barbatic acid	
3.	U. baileyi	Mixed with other aromatic herbs, such as	Usnic acid, norstictic acid	10
		Valeriana jatamansi forfavoring and curing	and an unknown substance;	
		tobacco	Eumitrin A, Eumitrin B, norstictic	
			acid, Salazinic acid, connorstictic	
			acid, galbinic acid(trace),	
	TTTTTTTTTTTTT		hyposalazinic acid (trace)	
4.	U. bismolliuscula	Inhibition of tyrosine activity	Usnic acid, stictic and constictic	11
			acids	
5.	U. galbinifera	Used as lockets for those suffering from phobias	Galbinic and norstictic acids	6
6.	U. ghattensis	antioxidant, hepatoprotective and antibacterial	Usnic acid sometimes with an	11
		activity	unknown substance	
7.	U. gigas	U. gigas are chewed freshand the bitter juice	Usnic acid	2
		swallowed, relieving stomach pain.		
8.	U. himalayana	Burned as a "lichen cigarette"	Usnic, norstictic, salazinic,	13
			and stictic acid complex	
9.	U. orientalis	Used as medicine and spice	Usnic and salazinic acid	3
10.	U. pectinata	Used for stopping bleeding fromexternal	Usnic acid and stictic acid complex	15
		injuries, relieving pain, bloody feces, and		
		swelling		
11.	U. sinensis	It is used for the treatment of children	Usnic acid	6
		suffering from common ills such as fever,		
		head ach and intestinal worms.		
12.	U.subflorida	Mixed with other aromatic herbs, such as	Usnic, protocetraric acids:	11
		Valeriana jatamansi forfavoring and curing	barbatic acid present or absent	
		tobacco		
13.	U. subfloridana	Applied for treating sore eyes, mixed with	Usnic acid and norstictic acid	8,14
		tobacco and butter, boiled, cooled, and		
		applied as lotion to eyesUsed for painful and		
		reddened eyes, bleeding from external injuries,		
		andswelling		
14.	U. thomsonii	Used as medicine and spice	Usnic acid alectorialic and	3
			diffractic acid	
15.	U. undulata	It is also used to make pillows in the Mysore	Galbinic, norstictic, and salazinic	6
		regions and is made into lockets to be carried	acids	
		around the necks of those suffering from		
		phobias.		

Western Ghats. The medicinal value of the lichens is recorded by the traditional knowledge holders of different parts of the Western Ghats and also literature survey was done on the medicinal uses of the *Usnea* lichens. The information on medicinal uses of the *Usnea* lichen was collected through interviews with tribal elders and knowledgeable people using questionnaire modified by Sinha 1996.

The representative lichen materials used by the practioners are collected and identified. The data on locality, altitude, vegetation type, and microhabitat were recorded. The specimens were identified with the help of morphological, anatomical and chemical tests. The identification of collected lichens is done by using standard manual (Awasthi 2000).

Results and Discussion

A total of 15 Usnea species have been recorded from the Western Ghats which have been used in the traditional medicine in Western Ghats and also all over the world. Table 1. Among the 15 species, those of U. bismolliuscula, U. ghattensis, U. himalayana and U. undulata have been used extensively in traditional medicine practises such as antioxidant, hepatoprotective and antibacterial activity inhibition of tyrosine activity and some are also used to make pillows in the Mysore regions and is made into lockets to be carried around the necks of those suffering from phobias.

These lichens majorly contains Usnic acid, Norstictic acid, salazinic acid and stictic acid as the secondary metabolite. Around 15% of lichens have been used to treat wounds and bone fracture.

Conclusion

Western Ghats are the treasure house of different varieties of life forms including lichens. 63.3% of the Genus *Usnea* from India is found in Western Ghats. The knowledge on the medicinal value of *Usnea* lichens is very useful. The sustainable harvesting of these lichens and preparation of pharmaceutical formulation utilizing the traditional knowledge will lead to the success.

References

Awasthi, D.D. (2000). A Compendium of the Macrolichens from India, Nepal and Sri Lanka. *Bishen Singh Mahendra Pal* Singh Publishers and Distributors of Scientific Books, Dehra Dun, India.

- Coady, Y. and F. Boylan (2014). *Rev. Bras. Farmacogn.*, **24:**197-205.
- Kalachar, H.C.B., N.Y. Arthoba, K.S. Vinayaka, R. Viswanatha and M.S. Vasanth Kumar (2012). Electrochemical studies on Usnic acid from Usnea pseudosinensis using multi walled carbon nanotube modified pencil graphite electrode. *International Journal of Analytical and Bioanalytical Chemistry*, 2(3): 179-184.
- Kokwaro, J.O. (1976). Medicinal plants of East Africa. East African Lit. Bur, Nairobi.
- Mesta, A.R., K.S. Vinayaka and N. Rajeswari (2015). Distribution Pattern and Ecology of Usneoid lichens in Western Ghats, Southern India, **4(3):** 247-254.
- Motyka, J. (1938). Lichenum generis Usnea stadium monographicum: pars systematic, 1(2): Leopoli.
- Nayaka, S., D.K. Upreti and R. Khare (2010). Medicinal lichens of India. In Drug from plants.
- Ohmura, Y. (2003). What species of Japanese lichens are edible? *Lichen News Bull. Lichenol. Soc. Jpn*, **13:** 6-9.
- Shah, N. and J. Herbs (1998). Spices Med. Plants, 5: 69-76.
- Shukla, V., R. Kumari, D.K. Patel and D.K. Upreti (2015). *Amino Acids*, **48(1)**: 129-136.
- Sinha, R.K. (1996). Ethnobotany- The renaissance of traditional herbal medicine, Ina Shree Publishers, Jaipur India. 1996, 242.
- Singh, K.P. and G.P. Sinha (2010). Indian Lichens: Annotated Checklist. Botanical Survey of India, Kolkata.
- Upreti, D.K., K. Pradeep and S. Nayaka (2005). Commercial and ethnic uses of lichens in India. *Economic Botany*, **59(3)**: 269-273.
- Van, B.E. and J. Wyk (2008). Ethnopharmacol, 119: 331-341.
- Vinayaka, K.S. and Y.L (2012). Krishnamurthy. Ethnolichenological Studies of Shimoga and Mysore District, Karnataka, India. *Plant Science*, 25(1): 265-267.
- Wang, L.S., T. Narui, H. Harada, C.F. Culberson and W.L. Culberson (2001). *Bryologist*, **104**: 345-349.
- Wang, L.S. and Z G. Qian (2013). -中国药用地衣图鉴 [Zhong guo yao yong di yi tu jian ¼ Illustrated medicinal lichens of China]. Yunnan ke ji chu ban she, China.
- Wang, Z.Q.L.S. (2013). In Yunnan ke ji chu ban she, China, 2013.